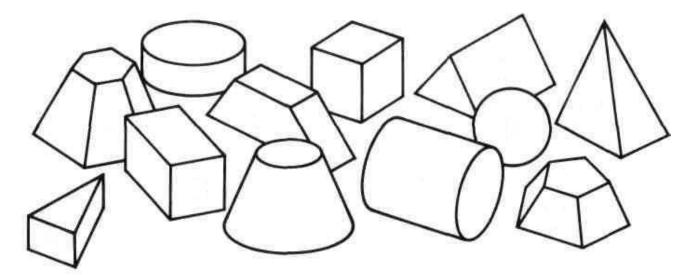
ГЕОМЕТРИЯ: СЕЧЕНИЯ МНОГОГРАННИКОВ (задание 14)

Математика профильная

Сузьмина Анастасия Александровна, учитель математики МАОУ СОШ № 166



MATEMATUKE

12 заданий с кратким ответом

7 заданий с развернутым ответом

19 заданий

235 минут

Баллы	Первичный	100бальная шкала
Максимальный	32	100
Минимальный	5	27

ГЕОМЕРИЯ: ЕГЭ по математике

Задания	1	2	3	14	17
Часть работы		1 часть		2 ча	ЭСТЬ
Уровень	Б	Б	Б	П	П
Балл, min	1	1	1	3	3
	Задани	те 14. Стерео	метрическая	задача	

Расстояние между прямыми и плоскостями

Расстояние от точки до прямой

Расстояние от точки до плоскости

Сечения пирамид

Сечения призм

Сечения параллелепипедов

Угол между плоскостями

Угол между плоскостями граней многогранника

Угол между прямой и плоскостью

Угол между скрещивающимися прямыми

Объёмы многогранников

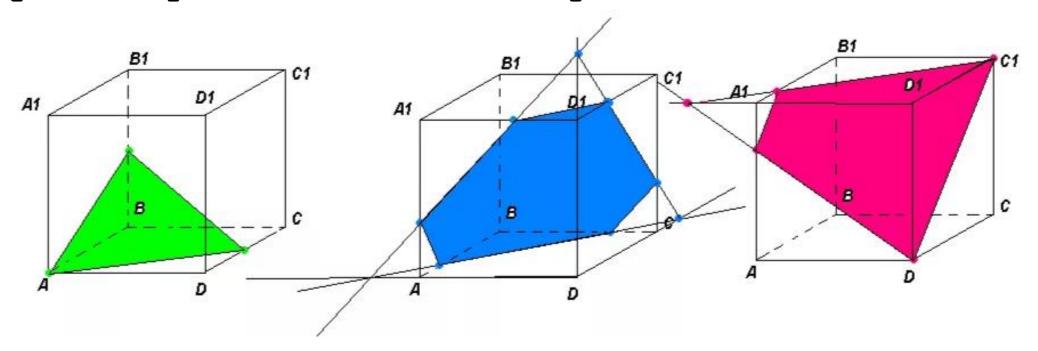
Сечения круглых тел

Круглые тела: цилиндр, конус, шар

Комбинации фигур

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Сечение многогранника — это многоугольник, вершины которого принадлежат ребрам, а стороны граням многогранника, при этом две соседние вершины принадлежат одной грани.



ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Аксиомы стереометрии

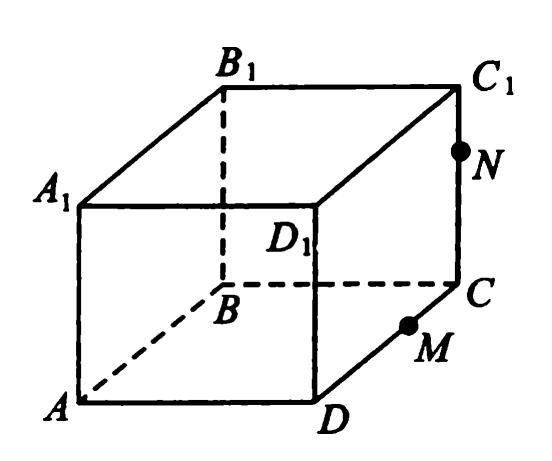
- ${\tt A1.}$ Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
- A2. Если две точки прямой лежат в плоскости, то все точки данной прямой лежат в плоскости.
- А3. Если две плоскости имеют общую точку, то они имеют общею прямую, которой принадлежат все общие точки плоскости.

Аксиомы планиметрии

A4. в любой плоскости пространства выполняются все аксиомы планиметрии

Теоремы

- $\mathtt{T}1$. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
- T2. Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает ее, то линия пересечения



Задача 1

B ky6e $ABCDA_1B_1C_1D_1$ M \in DC, $N\in$ CC $_1$.

Выполните задания:

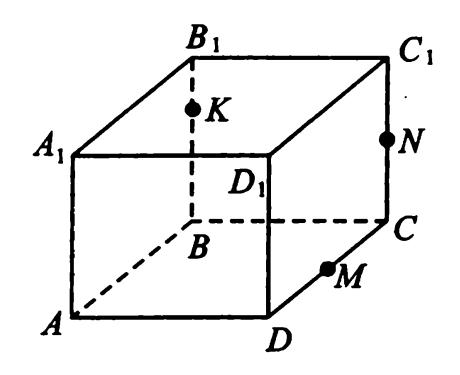
- а) укажите грань куба, в котором лежит отрезок MN.
- б) укажите грань куба, параллельную отрезку MN.

Задача 2

В кубе $ABCDA_1B_1C_1D_1$ на ребрах DC, CC_1 , BB_1 взяты соответственно точки M, N, K так, что M и N — середины ребер DC и CC_1 , $B_1K:KB$ = 1:2.

Выполните задания:

- а) укажите грань, параллельную грани DD_1C_1C .
- б) через точку K проведите прямую KT, параллельную отрезку MN.
- в) укажите ребро куба (отличное об ребра BB_1), которое



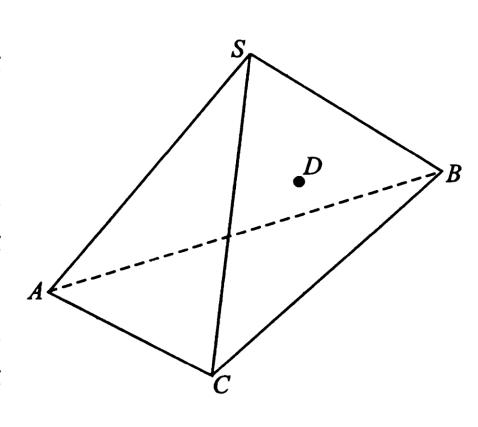
Задача 3

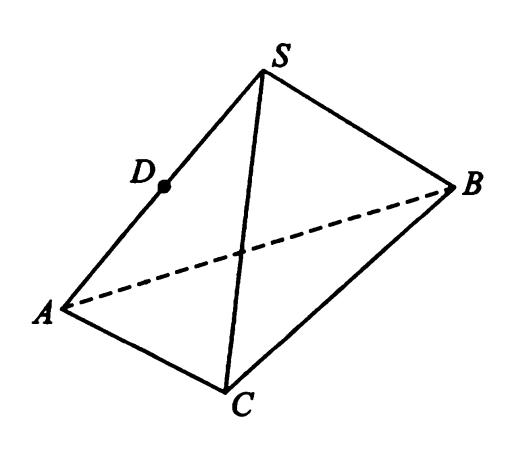
peбpy SC;

Внутри грани SBC треугольной пирамиды SABC взята точка D.

Через точку D проведите:

- а) отревок с концами на ребрах пирамиды, параллельный ребру BC;
- б) отрезок с концами на ребрах пирамиды, параллельный
- в) отрезок с концами на ребрах пирамиды, параллельный





Задача 4

Через точку D, лежащую на ребре AS тетраэдра SABC, постройте:

- а) сечение параллельное основанию ABC;
- б) сечение параллельное грани SBC;
- в) сечение перпендикулярное основанию ABC.

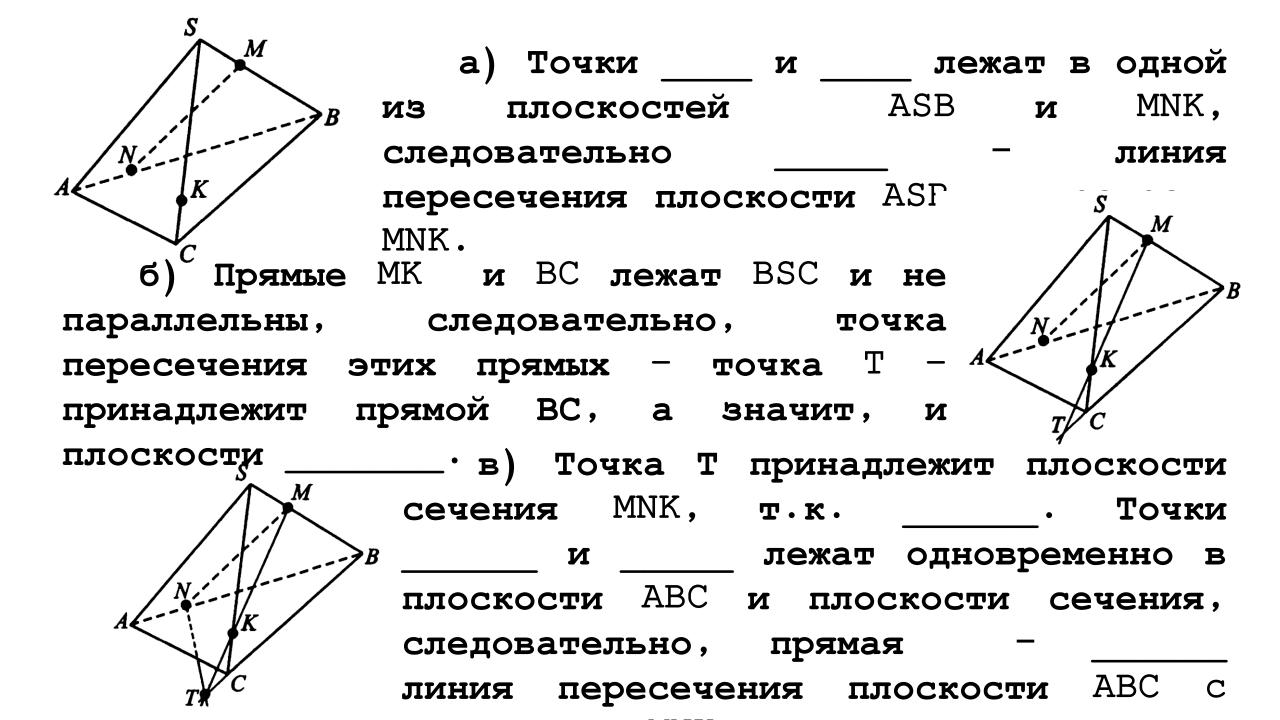
Задача 5

Сечение пирамиды SABC проходит через точки M, N, K.

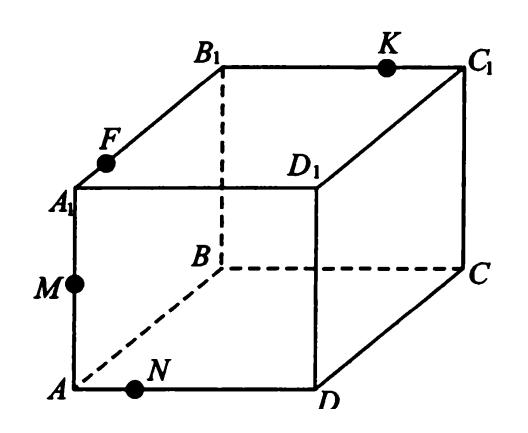
Выполните задания, вставив на подчеркнутые места в представленном решении нужные точки или плоскости. Постройте:

ASB M MNK;

- б) точку пересечения прямой МК и плоскости АВС;
- в) линию пересечения грани ABC с плоскостью MNK;
- г) линию пересечения грани ASC с плоскостью MNK.

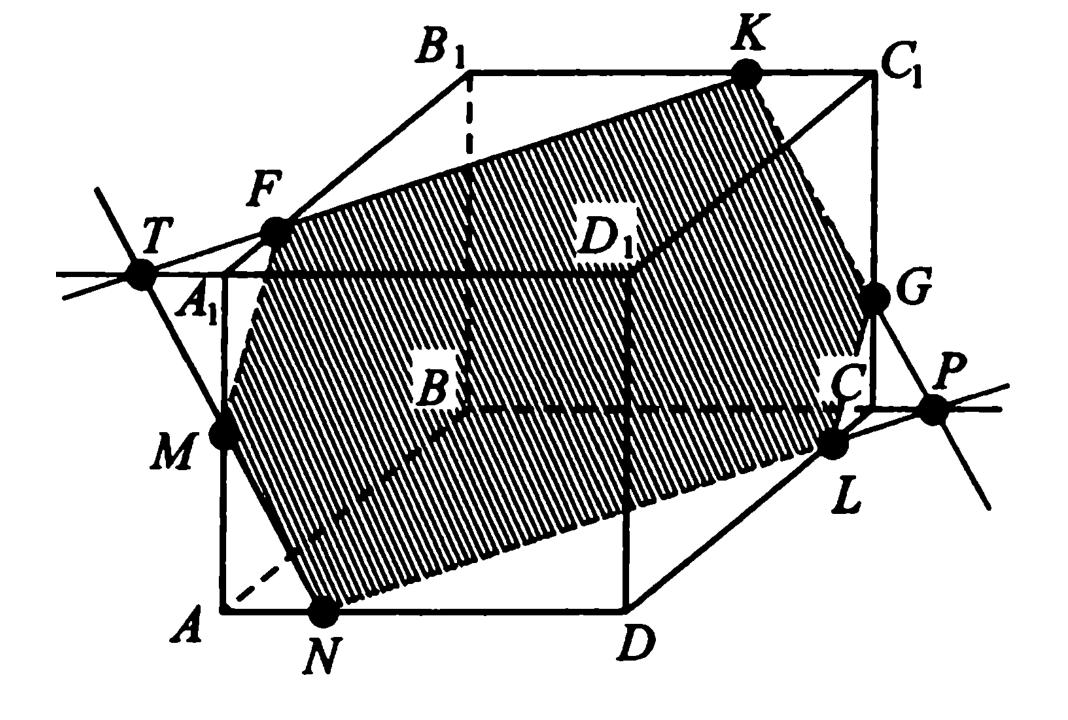


ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ

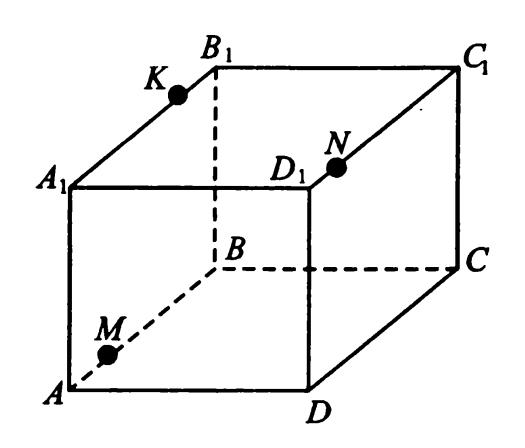


Задача 1

Постройте сечение параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью, проходящей через точки M, N, K.



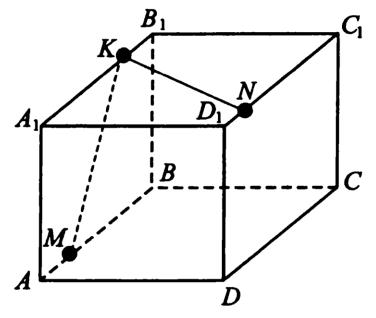
ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ



Задача 2

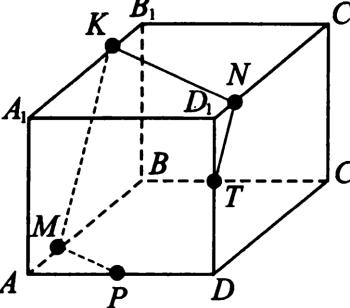
Постройте параллелепипеда плоскостью MNK.

 \mathbf{Ce} чение $\mathbf{ABCDA}_1\mathbf{B}_1\mathbf{C}_1\mathbf{D}_1$

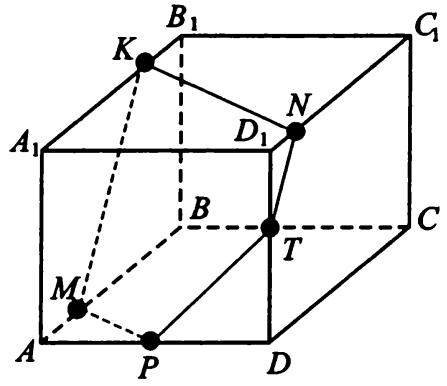


Решение:

Шаг	<u>1. </u>	<u> </u>	лежат	В
плоскости	грани	A1B1C1 D1	N	В
плоскости	сечения	, значит	, пря	мая
	РИНИЯ	пересече	е кин	XNT
плоскосте	й. Аналогі	медп онги	ая М	K –
линия пе	ресечения	плоскости		_ и
плоскости	•			



 C_1 <u>Шаг 2.</u> По теореме T1 через точку N в плоскости проведем прямую NT, прямой MK. Т — точка пересечения NT и DD_1 . Аналогично через точку M в плоскости проведем прямую MP, , KN. Р — точка пересечения прямой MP и ребра

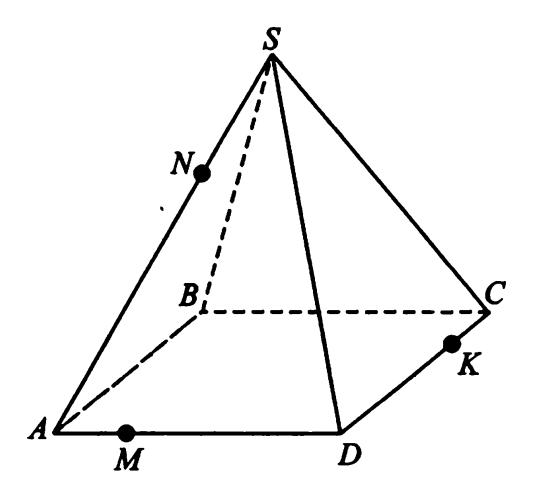


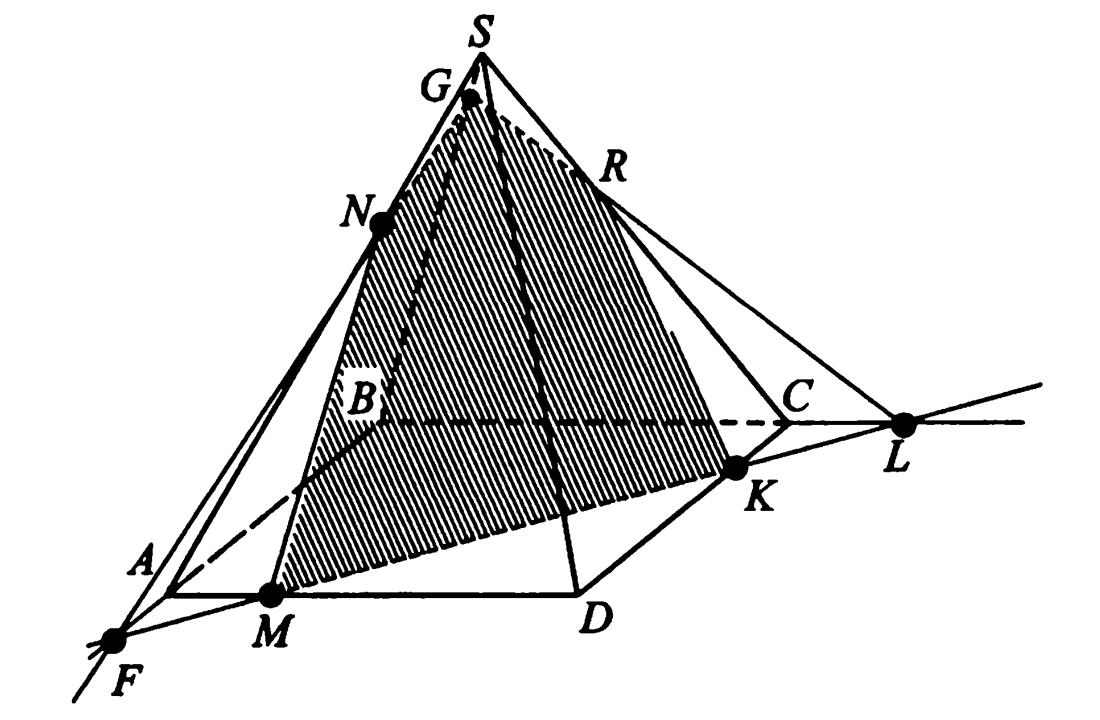
<u>Шаг 3.</u> РТ — линия пересечения плоскости грани
и плоскости сечения ____ — искомое сечение.

ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ

Задача 3

Постройте сечение пирамиды SABCD плоскостью MNK.





Задача 1

Площадь основания правильной четырёхугольной пирамиды SABCD равна 64, и площадь сечения, проходящего через вершину S этой пирамиды и через диагональ её основания, тоже равна 64.

- а) Докажите, что боковое ребро этой пирамиды больше, чем сторона основания.
- б) Найдите площадь боковой поверхности этой пирамиды.

Задача 2

- В правильной треугольной призме $ABCA_1B_1C_1$ стороны основания равны 6, боковые рёбра равны 4.
- а) Изобразите сечение, проходящее через вершины A, B и середину ребра $A_1\,C_1$, и докажите, что это равнобокая трапеция.
 - б) Найдите площадь этого сечения.

Задача 3

Точки P и Q- середины рёбер AD и CC_1 куба $ABCDA_1B_1C_1D_1$ соответственно.

- а) Докажите, что прямые B_1P и QB перпендикулярны.
- б) Найдите площадь сечения куба плоскостью, проходящей через точку P и перпендикулярной прямой $B\mathcal{Q}$, если ребро куба равно 10.

Задача 4

В пирамиде SABC ребра SA, SB и SC попарно перпендикулярны, AB=BC=AC= $4\sqrt{2}$.

- а) Докажите, что SB = SC.
- б) На ребрах SA и SC взяты точки K и L соответственно, причем SK: KA = SL: LC = 3:4. Найдите площадь сечения BKL.

Задача 5

В правильной четырехугольной призме $ABCDA_1B_1C_1D_1$ плоскость α проходит через вершины B_1 и D, пересекает стороны AA_1 и CC_1 в точках M и K соответственно, а сечение призмы плоскостью α является ромбом.

- а) Докажите, что точка M- середина ребра AA_1 .
- б) Найдите высоту призмы, если площадь основания равна 3, а площадь сечения равна 6.

Спасибо!

У вас есть вопросы? +7 908 63 91 607,

suzminanas@yandex.ru

